ОКНЗ "Софіївська ЗОШ І-ІІІ ступенів"

 





Яндекс цитирования

Методичний посібник по темі:"РОЗВ'ЯЗУВАННЯ ТРИКУТНИКІВ". 1 частина.

 

Методичний   посібник узгоджений з креативними технологіями у навчальному процесі, розроблений так, щоб  надати невідкладну методичну допомогу  вчителям математики, які працюють або працюватимуть за інтерактивною методикою, і технологічно моделюватимуть навчально-інформаційного середовища теми «Розв’язування прямокутного трикутника». Методичнийпосібник    допомагає  організації самоконтролю і системного    зовнішнього контролю за досягненнями учнів.

Автор методичного посібника     виходить з того, що геометрія трикутника, як точна наука, допомагає учням системно  сприймати навколишній світ. Розвиваюча мета навчання  сприятиме  формуванню  цілісної гами уявлень про трикутник на площині, удосконалення навичок і умінь застосувати властивості трикутників при розв'язані практичних завдань у сфері дизайну,  сучасного будівництва,  моделюванні одягу тощо.

У даному методичному посібнику      методично ,та в повному обсязі розроблені заняття з розширеним теоретичними , дидактичним та історичним матеріалом. Дидактичний  матеріал розподілено на секції за рівнями. За власним бажанням вчитель може добирати   і формувати свій банк диференційованих задач, у відповідності до поставлених цілей. Автор щиро бажають успіхів усім користувачам  і вдячні усім, хто не тільки використовуватиме  методичні рекомендації, а й  поділиться власним досвідом у  роботі над  даною темою.

                  В умовах розбудови національної системи загальної середньої освіти важливе значення набуває інноваційна діяльність, яка характеризується системним експериментуванням, апробацією та застосуванням інновацій (нововведень) в освітньому процесі .Найбільш популярним є такі педагогічні технології: інформаційно-розвивальні, діяльнісні, розвивальні, особисто орієнтовані. Метою особистісно орієнтованих технологій є формування активної, творчої особистості майбутнього фахівця, здатного самостійно будувати і коригувати свою навчально-пізнавальну діяльність. До цих технологій входять урочна та позаурочна  самостійна діяльність учнів, робота за індивідуальним планом, дослідницька робота, метод проектів тощо.В нашій школі педагоги, як найбільш перспективну, впроваджують особистісно орієнтовану технологію навчання. Процес розробки і освоєння інновацій передбачає поетапну діяльність вчителя.                                              Експериментальну роботу над проблемою особистісно орієнтованого навчання учнів розпочала у 2007 р. Вибір проблем був зумовлений переорієнтацією сучасної освіти як на особистість педагога, так і на особистість учнів. В умовах особистісно орієнтованого навчання відбувається становлення та розвиток таких важливих якостей особистостей, як рефлективність, критичність мислення, вміння працювати з інформацією, спілкуватися та нести відповідальність за наслідки спільної роботи.                                                                                                                       Етапи роботи  над інноваційною проблемою можна описати наступним алгоритмом.

                       Алгоритм роботи викладача математики над інноваційною проблемою

1. Вибір теми (проблеми) індивідуальної науково-методичної роботи:

- ознайомлення з літературою;

- ознайомлення з нормативними документами;

- вивчення прогресивного педагогічного досвіду з інноваційної проблеми.

2. Детальне ознайомлення з проблемою засобами літературних джерел:

- складання картотеки літературних джерел;

- виписки з літературних джерел;

3. Уточнення теми і розробка попереднього варіанта плану індивідуальної науково-методичної роботи:

- обґрунтування вибору теми;

- актуальність і новизна;

- відбір актуальних методів та засобів пошукової діяльності;

- формування мети та завдань роботи;

- розробка календарного плану індивідуальної роботи.

4. Впровадження інновацій у практику власної педагогічної діяльності.

5. Аналіз та оцінка результатів індивідуального досвіду роботи над проблемою, формування висновків та пропозицій.

6. Літературне оформлення роботи, звіт про отримані результати перед колегами.                      Результати роботи представлені на ваш розсуд.

 

 

Дитина дуже рано починає орієнтуватися в оточуючому її реальному, а потім і уявному просторі з урахуванням положення власного тіла. В дослідженнях А.Я. Колодної, Б.Г. Ананьєва, А.А. Люблінської, А.Н. Сорокіна і багато інших показано, що перші просторові образи у дітей виникають при усвідомленні ними схеми свого тіла, залежно від розпізнавання правої і лівої руки (ноги). Всі предмети в просторі вони сприймають з урахуванням його вертикального положення (вгорі - внизу, спереду - ззаду, збоку, справа - зліва і т. д.). Ця природна позиція служить для створення різноманітних і адекватних просторових образів. Орієнтація по схемі тіла є ведучою не тільки при практичному оволодінні простором, але і при переході від реального (фізичного) до уявного (геометричного) простору.

Про це красномовно свідчать дитячі малюнки. Починаючи малювати, діти намагаються перш за все відтворити в малюнку себе або інших «чоловічків». Відтворюючи умовними засобами себе в малюнку, вони стараються на цій основі зробити композиційну побудову малюнка, тобто здійснити просторове розміщення всіх об'єктів. В молодших класах на уроках малювання учні малюють спочатку фігури на площині, але деякі з них вже стараються надавати їм об'ємного вигляду. Пізніше ці фігури зображають в просторі, не знаючи при цьому, що таке трьохвимірний простір. Діти ліплять об'ємні фігури з пластиліну та роблять їх з інших підручних матеріалів. У старших класах вивчення просторових фігур відбувається на уроках стереометрії.

Просторове мислення виникає в надрах практичної потреби орієнтації на місцевості, серед об'єктів матеріального світу. Особливість просторових зв'язків, як підкреслював Ананьєв, полягає в тому, що це є один з видів віддзеркалення відношень між об'єктами. Це означає, що просторові властивості не дані у всьому своєму різноманітті в окремих статичних, ізольованих предметах, застиглих геометричних формах. Вони можуть бути виявлені, вивчені, використані лише в ході активної перетворюючої діяльності суб'єкта, направленої на трансформацію, видозміну об'єктів, в ході якої тільки і можуть бути виділені (знайдені) просторові властивості і відношення.

Розвиток просторового мисленнями дітей відбувається і в процесі навчання. Як відомо, якнайповніше просторові властивості і відношення досліджуються в математиці. З одної сторони, розвиток просторового мислення школярів є необхідним для розвитку у них здібностей до уявлення взагалі, а з другої - це необхідна умова для свідомого засвоєння курсу стереометрії. Формування просторового мислення є одним із найважливіших завдань геометрії. Багато математиків працювали над тим, як покращити процес вивчення геометрії, щоб максимально розвинути просторове мислення учнів.

В даний час ведеться серйозна робота по удосконаленню змісту освіти і шляхів навчання з метою максимального їх наближення до сучасного рівня наукових знань і методів дослідження. В зв'язку з цим розробляються психолого-дидактичні принципи відбору навчального матеріалу з урахуванням досягнень науки і техніки, визначаються оптимальні способи його засвоєння.

На етапі розбудови системи національної освіти та інтеграції її в світову важливим є питання відповідності змісту базової математичної освіти вимогам суспільства, розвитку науки, сучасним потребам особи.

Основна школа в Україні згідно з Законом України «Про освіту» повинна забезпечити базову загальну середню освіту, тобто дати випускникам чітко окреслене коло знань, практичних навичок та умінь, потрібних для роботи в умовах сучасного виробництва, а також для здобуття повної загальної середньої освіти в старшій школі та продовження неперервної освіти.

Специфіка і структура шкільного курсу математики відкривають широкі можливості для розвитку творчих здібностей учнів, формування прийомів розумової діяльності, інтелекту.

У вирішенні цих питань важливе місце належить геометрії, оскільки геометричні знання і вміння є одним із вагомих факторів, що забезпечують, насамперед, готовність людини до неперервної освіти та трудової діяльності.

 

 

 

Подобається